If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2-6=8k
We move all terms to the left:
4k^2-6-(8k)=0
a = 4; b = -8; c = -6;
Δ = b2-4ac
Δ = -82-4·4·(-6)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{10}}{2*4}=\frac{8-4\sqrt{10}}{8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{10}}{2*4}=\frac{8+4\sqrt{10}}{8} $
| 7(6x-4)=6x-28 | | 30=0.81t^2 | | 5(5x-2)=2(9x+3 | | 3x-27=5(2x+2)-2 | | x-2+1=8 | | 5x/6=10/3 | | -3x+2-x(-x+2)=2x²-2x-2 | | 45/(9x-3)=3 | | -8x+10=2(5–4x) | | 322/(5x+3)=14 | | 3x-(7-2x)=14-2x | | (2x+7)/9=11 | | 3x^2+34x-40=0 | | 8=3^x | | (3x+45)+(x+15)=180 | | -2a-6=0 | | 5(2x+2)-3=4x+37 | | 6=2(x+2)-8 | | 2(4x-3)=4x+14 | | 10(2x+2)=6(3x+8) | | -9=2(4x+5)-3 | | 5(x+2)=-3x-46 | | 4=4(3x-2) | | 12x-25=7x-50 | | -34=4(x-2)-6 | | 3(4x+2)+5=23 | | -4x-36=2(3x+2) | | 36=4(3x-5)-4 | | -46=2(3x+4) | | 2(5x+3)+6=-28 | | 50=3/2t-t | | 1-5(3x+2)=3x+9 |